

Remediation of a former gas mantle factory contaminated with radioactive thorium-232

Adam Lowe Operational Services Department Cookridge, Leeds

Public Health Former industrial use

- Manufacture thorium gas mantles:
 - Past practice not regulated historically
 - o Different site usage prior to remediation
 - Remediation for residential use

Public Health Establishing radiological conditions

Comprehensive radiological survey AND review of historical information

- 1. Feed materials
 - Quantities, Bg/g and chain equilibrium (then and now) Ο
 - Physical and chemical properties Ο
 - Internal dosimetry, and possible spread on site 0
- 2. Processes

3

- Effect on individual radionuclides \bigcirc
- Localised accumulation and contamination \cap
- 3. Historical waste management strategy
 - Especially any on-site disposals Ο

<u>K</u>

4

Public Health Pre-remediation survey methods

- Gamma "walk-over" survey
 - Detect "hidden" contamination
 - Contamination mapping and marking with paint
 - $\circ~$ Dose rates for prior risk assessment
- Surface contamination measurements
 - Only for specific surfaces (and low background)
 - $\circ~$ Can accurately delineate contamination
- Trial excavations (boreholes and pits)
- Sampling and gamma spectrometry
 - Empirical calibration of site measurements
 - Bq/g for prior risk assessment

18th European ALARA Network Workshop, Marcoule, France, 11-13 March 2019

7

Public Health Pre-remediation results England

- 1. Activity concentrations
 - Th-232: 0 100 Bq/g (500 Bq/g max) •
 - Outside and inside buildings •
 - On the surface, in the surface, and under the surface •
 - On and under the ground up to 3 m depth
- Gamma dose rates 2.
 - Up to 20 μ Sv/h in contact •
 - Up to 5 μ Sv/h whole body
 - Can increase during remediation •

Public Health England

8

Radiological end-points

- Dose constraint (NORM) = $300 \mu Sv/y$ per site
 - Optimise below dose constraint
- Need to convert to Bq/g (residual)
 - Consistent with generic regulatory exclusion levels
- In practice, the following was agreed:
 - Residential use: <0.1 Bq/g (0.4 Bq/g max)
- Need to agree policy on AVERAGING

9

Radiation Protection Programme

- Prior risk assessment
 - \circ External doses: 0.1 1 mSv
 - \circ Internal doses (no RPE): 0.2 2 mSv
- Protection measures
 - o Training (initial, plus regular "tool-box") and supervision
 - Written "Method Statements"
 - Dust suppression (containment, extraction, damping down)
 - Entry/exit controls (barriers, PPE, change, "wash", monitor and record)
 - o "Industrial" PPE, including RPE when required
 - Individual dosemeters (TLD, Category B workers)
 - Periodic air sampling (mostly static samplers)
 - Contingency Plans for wounds and unexpected contamination

18th European ALARA Network Workshop, Marcoule, France, 11-13 March 2019

RP Programme: Results

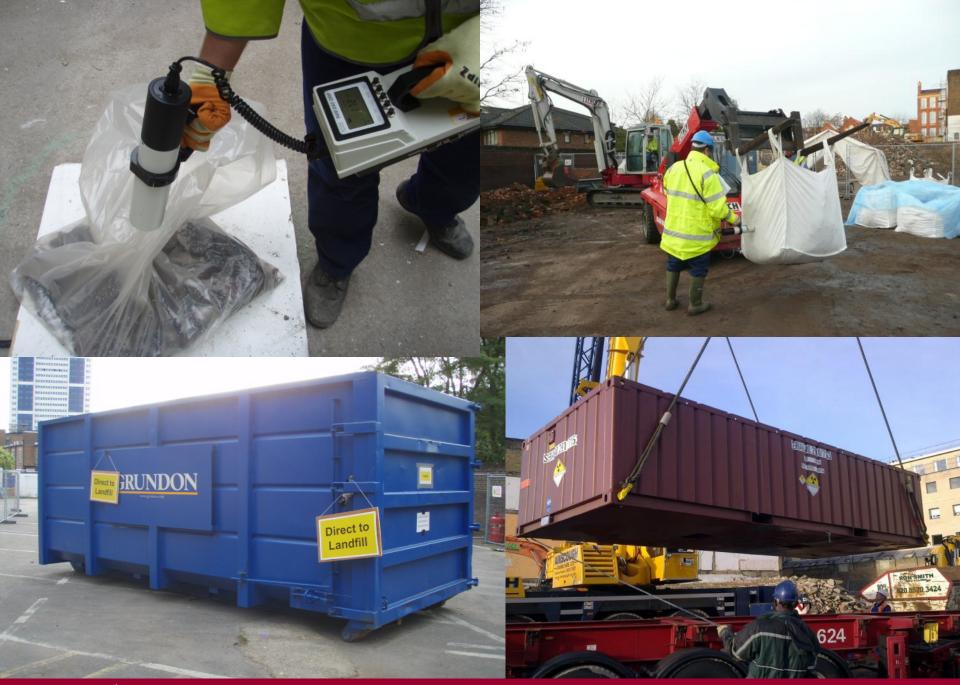
- External and internal doses: <0.1 mSv
- Exit monitoring (over 1000 "exits")
 - \circ 66 (5%) contaminated gloves
 - 2 (0.2%) skin contamination (wrists poorly fitted PPE)
 - 1 (0.1%) contaminated shoes
- Site monitoring
 - No spread of contamination beyond designated areas
 - $\circ~$ No increase in ambient Th air concentration at perimeter
 - $\circ~$ Negligible doses to members of the public in vicinity of site
- Observation
 - $_{\odot}~$ Doses were negligible, but did we go beyond ALARA?

Public Health Waste Management Programme

- Site issued with waste permit (authorisation)
- Permit requires minimisation of active waste ("BAT")
- General requirement to re-use and recycle materials
 - Need to segregate active and non-active waste
 - Practical waste screening strategy and methods
- Within UK regulatory structure

England

- > 5 Bq/gDispose to authorised disposal site
- 0.5 5 Bq/gExempt NORM waste – general landfill
- <0.5 Bq/g Out of scope – leave, re-use, recycle
- Waste inventory records (Bq, Bq/g, volume, mass)


Public Health England

Waste screening methods

- Important pre-segregation via initial survey
 Clear marking of contaminated materials
- Rapid screening measurements (as waste is produced)

 Individual waste bags and drums (from buildings)
 Excavator buckets, waste skips and trucks
 Based on gamma emission computer modelling
- Confirmatory measurements

 Sampling and gamma spectrometry
 Rotating drum monitor (gamma spec)
 Inter-comparisons with "test sources"

18th European ALARA Network Workshop, Marcoule, France, 11-13 March 2019

- Radiological incidents
 - o 4 small wounds no contamination
 - o1 misuse of PPE prompted refresher training
- Mechanical incidents

 Detached grinding wheel
 Projectile rubble!

- Observation
 - Going beyond ALARA increases exposure to significant conventional risks

- Must agree in advance:
 - Radiological end-point (Bq/g) and averaging methods
 - Waste management strategy, and screening methods
- Do a comprehensive site survey AND historical review
- Gamma monitoring is best all-round tool
 - But use other techniques as well
- Buried contamination is common on industrial sites
 - Do boreholes/trial pits
- Assume that more contamination will be found
 - Regular repeat surveys during remediation

Conclusions cont.

- Do a <u>realistic</u> prior risk assessment
 - Use proportionate controls, adapting existing methods
 - < <1 mSv is readily achievable
- Training is important but should be practical
- It's not always possible to fully decontaminate buildings
 - Cannot be demolished without precautions
 - Need to mark up contaminated materials, recover and screen post-demolition.
- Going beyond ALARA can increase exposure to significant conventional risks!

