

Insight into the process

André Bloot Radiation Protection Department

EAN Workshop; 12-03-2019

Applus+ RTD, The Netherlands

- **1** ALARA principle
- **2** Scope non-nuclear facilities
- **3** Process of decommissioning non-nuclear facilities
- **4** Decommissioning; execution process
- **5** Decommissioning project; a former phosphorus production plant

1. ALARA principle.

Scope of non-nuclear facilities

- 2. Scope of non-nuclear facilities
- Induced or applied radioactive materials (artificial)
 - Accelerator facilities; radionuclide production
 - Research laboratories; radionuclides as markers

- Natural occurring radioactive materials (NORM)
 - Oil & gas production installations (NL)
 - Geothermic installations (NL)
 - Coal fired power stations (NL)
 - Slag wool application as insulation (NL)

Scope of non-nuclear facilities; specific issues

- Natural Occurring Radioactive Materials (NORM)
 - Large amounts of material (>10,000 tons)
 - Relative low activity concentration (1-100 Bq/g)
 - Clearance levels 1 Bq/g.
 - Relative low external exposure
 - Inhalation of dust by the workers
 - Emission of dust (environment)

Applus

- **3.** Process of decommissioning
- Inventory
 - Historical research of the facilities
 - Licenses, documents, interviews, rumors
 - Inventory in advance of decommissioning
 - During working life
 - Inventory prior to the decommissioning
 - Inventory during decommissioning
 - Items never opened during operations

Aplus

• Inventory of a accelerator facility ; concrete/reinforcement

DRSN. 3

DRSN. 4

Applus[⊕]

RTD

North

Sea

Port

4. Decommissioning; execution process

- Stakeholders
 - Facility Owner
 - License authority
 - Inspectorate
 - Residents
- Project organization
 - Project management
 - Contractors
 - Radiation Protection Expert

Autoriteit Nucleaire Veiligheid en Stralingsbescherming DE OMGEVINGSDIENST VOOR EEN SCHOON EN VEILIG ZEELAND

Decommissioning execution process

Project organization at site

- Management Advisory Group on decommissioning
 - Facility owner
 - Project management
 - Cleaning contractors
 - Waste manager
 - Radiation protection expert

- Subjects for discussion & decisions
- License applications
 - When, what, how long.
- Project logistics
 - Sequence, routing
- Decommissioning techniques
 - Inventory, methods
 - Tests, pilots projects
- Release of materials
 - Methods, procedures
 - Measuring techniques

Decommissioning techniques

- High pressure water cleaning
 - Personal Protection Equipment, inhalation; contamination
 - Water treatment; solids and solvable materials
 - Sampling of water
- Grinding/sand/metal parts blasting
 - Personal Protection Equipment, inhalation
 - Dust; air filter, emission
- Chemical removal techniques
 - Aggressive liquids, Personal Protection Equipment
 - Solid parts and neutralizing of chemicals
- Other techniques
 - Saw, drilling, milling, laser

Decommissioning and waste

- Specific approach/Graded approach for each project
- Decommission techniques; costs versus risks (ALARA)
 - Costs of workers
 - Exposure of workers
 - Environmental impact
 - Generating or reduction of waste
- Other issues;
 - Other buildings on the site
 - Citizens nearby the site

Decommissioning project former Phosphorus Production Plant

Decommissioning project former Phosphorus Production

- NORM & asbestos; PPE
- NORM & phosphorus; PPE

Applus[®]

- 5. Decommissioning project example
 - Specific approach: Former phosphorus production plant
 - Combined risks of phosphorus and NORM
 - "Neutralize" phosphorus risk at site by incineration
 - NORM waste (calcinate)
 - Production of phosphorus acid
 - Emission monitoring

Aplus

Specific decommissioning of the former sintering furnaces

Specific decommissioning of the sintering furnaces

- Options for dismantling of the sinter furnaces
- Re-use of materials; steel; heat resistant materials (500 tons)
- Waste reduction; costs of demolition versus cleaning
- Dust environment & emissions due to dust (< 5 mg/m³ and below clearance level)

Step by step approach

- Removal of the radioactive scaling by sand blasting
- 1. Removal of dust by vacuum cleaning; 30 tons
 - NORM landfill site (notification duty; < 10 Bq/g)
- 2. Removal of Pb-210 scaling from walls by sand blasting; 3 tons
 - NORM landfill site (specific clearance license duty)
- 3. Demolition of walls and ceiling; approx. 300 tons
 - Re-use of material below clearance levels (1 Bq/g)
- 4. Cleaning of steel by high pressure water jetting and sand blasting; 200 tons
 - NORM scaling; radioactive waste (license duty)
 - Re-use of metal to scrap metal s below clearance levels for surface contamination

Summary

- NORM installations: large amounts of waste with low activity concentration
- NORM decommissioning: dust is the major risk during decommissioning
- NNF: also other hazards involved with decommissioning
- Decommissioning projects: specific role of a management advisory group

