

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Radiation Protection Division

Implementation of the new BSS in Swizerland

Nicolas Stritt Swiss Federal Office of Public Health (SFOPH)

Salome Ryf, Thomas Gedeon, Patricia Grimm, Martha Palacios, Sybille Estier, Reto Linder, Barbara Ott, Selina Zompicchiatti, Werner Zeller

ERPAN, Paris meeting 2014

04. June 2014

Content

- Project revision of the Swiss legislation and BSS
- Scope and Clearence level
- Issue in medicine
- Training and education
- Radon
- Import/export of radoactive material
- Resume

Swiss legislation

- The Swiss legislation on radiation protection is in force since 1994. It is based on the recommendations of ICRP of 1990 (ICRP 60).
- The recommendations of ICRP 103 (2007) shall be implemented into Swiss legislation. An harmonization to the radiation protection concepts of the EU is aimed for, the Euratom Basic Safety Standards Directive (Draft and finla version) served as a guideline for the revision of the Swiss radiation protection legislation.

4

Scope

- **Radiation Protection Ordinance**
- 10 technical ordinances
- Lead by FOPH

Timeline of the project

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Revision of radiation protection legislation

Principles

- In accordance with Radiation Protection Law (no change)
- Transposition of ICRP 103
- Transposition of Euratom BSS
 - mandatory for:

reduction of trade barriers, material, workers (exchange)

- Keep it simple
- Keep established Swiss structures, good Swiss practices

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Radiation Protection Division

Organisation of the project

General principle of radiation protection

- Justification
- Optimisation
- Dose limitation
- Graded approach (authorisation, survey)

Exposure situations and categories of exposure

Category/ Situation	Public	Occupational	Medical		
Planned	Dose limit (Dose constraint)	Dose limit (Dose constraint)	DRL Dose constraint		
Emergency	Reference level	Reference level			
Existing	Reference level				

Dose limits

Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Radiation Protection Division

	Public	Occupational
Effective dose	1 mSv/a	20 mSv/a
Lens of the eye	15 mSv/a	20 mSv/a
Skin, extremities	50 mSv/a	500 mSv/a

New for Switzerland

Dose constraints

Tool for optimisation

Public

Dose constraint for specific source definied in authorisation

Occupational

 Dose constraint for specific activities established during the work

Medicine

- no dose limits
- for cariers and comforters: 5 mSv per case
- volunteers in research projects: 5 / 20 mSv/a
- diagnostic reference levels for patients

Reference levels

	Public	Occupational / obligated persons
Emergency exposure situation	100 mSv/a	50 mSv/a 250 mSv/a
Existing exposure situation ref. level for radon	20 mSv/a 300 Bq/m ³	

Exposure situations and categories of exposure

- Transitions

Category / Situation	Public	Occupational	Medical
Planned	Dose limit (Dose constraint)	 Dose limit (Dose constraint) 	DRL Dose constraint
Emergency	Reference level	Reference level	
Existing	Reference level		

Radon: from existing to planned

Existing exposure

- reference level for indoor radon in homes: 300 Bq/m³
- reference level at workplace 1000 Bq/m³

Planned exposure (occupational)

- from 170 kBqh/m³
- dose limit: 20 mSv/a

Scope – ionising radiation

- Ionising radiation λ < 100 nm, 12 eV
- regulated $\lambda < 0.25$ nm, 5 keV ?
- what about Extreme UV ?
- How to regulate ?
- How to measure? (Sv/h or W/m²?)

Subject matter and scope, new concept

- Old: radioactive substance: not any more when under limit (LE)
- New: everything is radioactive but not subject to authority control no limit to scope
- Clearence level LL like Euratom BSS
- Autorisation / licence limite LA keep Swiss value

Clearance level (LL)

Data sets

In view of the implementation of the new EU BSS into the Swiss legislation, we had to prepare the necessary data sets

Table A, Annex VII EU BSS

Activity concentration values for exemption or clearance of materials which can be applied by default to any amount and to any type of solid material

Clearance level (LL)

These values are only available for less than 300 radionuclides, whereas we need a complete set of data for 800 radionuclides in our legislation.

Therefore we have mandated *"Brenk Systemplanung / Consulting Engineers / Germany"* to do the necessary calculations for the 500 missing radionuclides.

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Radiation Protection Division

Clearance level (LL)

Scenario	Description	Exposed individual	Relevant exposure pathway
WL	Worker on landfill or in other facility (other than foundry)	Worker	External exposure on landfill Inhalation on landfill Direct ingestion of contaminated material
WF	Worker in foundry	Worker	External exposure in foundry from equipment or scrap pile Inhalation in foundry Direct ingestion of contaminated material
WO	Other worker (e.g. truck driver)	Worker	External exposure from equipment or the load on the truck
RL-C	Resident near landfill or other facility	Child (1–2 a)	Inhalation near landfill or other facility Ingestion of contaminated foodstuffs grown on contaminated land
RL-A		Adult (>17 a)	Inhalation near landfill or other facility Ingestion of contaminated foodstuffs grown on contaminated land
RF	Resident near foundry	Child (1–2 a)	Inhalation near foundry

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Radiation Protection Division

Clearance level (LL)

Scenario	Description	Exposed individual	Relevant exposure pathway
RH	Resident in house constructed of contaminated material	Adult (>17 a)	External exposure in house
RP	Resident near public place constructed with contaminated material	Child (1–2 a)	External exposure Inhalation of contaminated dust Direct ingestion of contaminated material
RW-C	Resident using water from	Child (1–2 a)	Ingestion of contaminated drinking water, fish and
RW-A	private well or consuming fish from contaminated river	Adult (>17 a)	other foodstuffs

Criteria:

- realistic scenario
 ⇔ 10 µSv/a
- Iow probability scenario ⇔ 1 mSv/a
- worst case scenario

Results

Available documents

- Final report (in German) with the data for 800 radionuclides and details of the calculation
- Data set as excel-sheets

Quality control / validation

- The data of Safety Guide RS-G-1.7 are correctly reproduced by the calculations
- Swiss FOPH in collaboration with the Institute of Radiation Physics (IRA) – has validated the data.

Limitations

 The model has its limits, in particular for short lived nuclides; conventions are needed

Clearance levels (LL)

- IAEA BSS Euratom BSS:
 - spec. activity for 257 nuclides (any amount)
 - abs. activity for 600 nuclides (moderate amount)
- CH (Radiation Protection Ordinance):
 - spec. activity for 800 nuclides (IAEA scenarios)
 - shortlived nuclides: LL = min (LE_{BSS_moderate}, LE_{Brenk})
- NORM
 - according to Euratom BSS

Annex III, Radiation Protection Ordinance (LL)

Verordnung													814.501
Nucli	de		е	inh				LL				С	S
											Richtwerte		
Radiomiklid	Halbwertszeit	Zerfalltart/ Strahhing	¶inh Str/Bq	ong Sv/Bq	h ₁₀ h _{0,0} (mSv/h)/ (mS GBq in 1 min Abstand Abs	7 hc _{0,07} Svh)/GBq (mSvh)/ 10 cm(kBq/cm ² stand	- 1 -)	L 4'5	LA Bq	1	CA Bqʻm ³	CS I Bq/cm ²	nstabiles Techternuklid
	2	3	4	5	6 7	8	9		10	1		12 1	3
Fr-222	14.2 m	β ⁻ /ph	2.10E-08	7.10E-10	0.001	1000	1.6	1 E+03	[2]	3.00E+05	4.00E+02	- 3	→ Ra-222 etc
Fr-223	22.00 m	$\beta^{-}, \alpha / ph$	1.30E-09	2.30E-09	0.017	2000	1.8	1.E+02	rīi	5.00E+06	6.00E+03	3	+→ Ra-223
Ra-223	11.43 j	α/ph	5.70E-06	1.00E-07	0.024	600	0.5	1.E+01	[2]	1.00E+03	1.00E+00	3	\rightarrow Rn-219 \rightarrow Po 215 \rightarrow Pb-211
Ra-224	3.66 j	α/ph	2.40E-06	6.50E-08	0.002	30	<0.1	1.E+00	[2]	3.00E+03	3.00E+00	3	→ Rn-220 etc
Ra-225	14.9 j	β^{-}/ph	4.80E-06	9.50E-08	0.007	1000	0.9	1.E+01		1.00E+03	2.00E+00	3	→ Ac-225
Ra-226	1600 a	α/ph	2.20E-06	2.80E-07	0.001	50	<0.1	1.E-02	[2]	3.00E+03	4.00E+00	1	→Rn-222
Ra-226 (+ filles)					0.283	5000	5.2	1.E-02		XXXX	XXX	1	
Ra-227	42.2 m	β ⁻ / ph	2.10E-10	8.40E-11	0.038	2000	1.8	1.E+02	[1]	3.00E+07	4.00E+04	3	→ Ac-227
Ra-228	5.75 a	B-/bp	1.70E-06	6.70E-07	< 0.001	<1	<0.1	1.E-01	2	4.00E+03	5.00E+00	0.3	→ Ac-228
Ac-224	2.78 h	ec,α/ph	9.90E-08	7.00E-10	0.058	100	0.2	1.E+02	[1]	6.00E+04	8.00E+01	- 30	→ Ra-224, Fr-220 etc
Ac-225	10.0 j	α/ph	6.50E-06	2.40E-08	0.005	20	0.1	1.E+01	[2]	9.00E+02	1.00E+00	10	\rightarrow Fr-221 etc
Ac-226	29.37 ћ	β^- , ec, α / ph	1.00E-06	1.00E-08	0.024	1000	1.3	1.E+02	[2]	6.00E+03	8.00E+00	3	→ Th-226, Ra-226 Fr-222
Ac-227	21.772 a	β⁻, α / ph	6.30E-04	1.10E-06	< 0.001	<1	<0.1	1.E-02	[2]	1.00E+01	1.00E-02	0.1	→ Th-227, Fr-223
Ac-228	6.15 h	β ⁻ / ph	2.90E-08	4.30E-10	0.145	2000	1.8	1.E+01	[1]	2.00E+05	3.00E+02	3	→ Th-228
Th-226	30.57 m	α/ph	7.80E-08	3.60E-10	0.002	100	0.3	1.E+03	nı –	8.00E+04	1.00E+02	30	→ Ra-222 etc
Th-227	18.68 j	α/ph	7.60E-06	8.90E-09	0.023	200	0.2	1.E+01		8.00E+02	1.00E+00	10	\rightarrow Ra-223
Th-228	1.9116 a	α/ph	3.20E-05	7.00E-08	0.002	3	<0.1	1.E-01	[2]	2.00E+02	3.00E-01	3	→ Ra-224
Th-229	7.34 E3 a	α/ph	6.90E-05	4.80E-07	0.027	300	0.5	1.E-01	[2]	9.00E+01	1.00E-01	0.3	→ Ra-225
1h-230	7.558 E4 a	α/ph	2.80E-05	2.10E-07	0.001	3	<0.1	1.E-01	_	2.00E+02	3.00E-01	1	→ Ra-220
Th-231	25.52 h	β⁻/ph	4.00E-10	3.40E-10	0.019	700	0.8	1.E+03		2.00E+07	2.00E+04	10	→ Pa-231
IB-252	1.405 E10 a	α/ph	2.90E-05	2.20E-07	0.001	1000	< 0.1	1.E-01	21	2.00E+02	3.00E-01	1	→ Ra-228
10-254 / Pa-254m	24.101	р/рд	5.80E-09	5.40E-09	- 0.008	6000	1.9	1.E+02	4	1.00E#00	1.005405	. ,	→ Pa-254
га даг (+ ццез)					0.335	0000	5.4	Anhang 4					- I
Pa-227	38.3 m	α, ec / ph	9.70E-08	4.50E-10	0.007	5	<0.1	1.E+01	[1]	6.00E+04	9.00E+01	300	→Ac-223
Pa-228	22 h	ec, β [*] , α / ph	5.10E-08	7.80E-10	0.168	400	0.9	1.E+01		1.00E+05	2.00E+02	10	→Th-228, Ac-224
Pa-230	17.4 j	ec, β ⁻ , α / pb	15.70E-07	9.20E-10	0.108	200	0.3	1.E+01		1.00E+04	1.00E+01	30	→Th-230, U-230, Ac-226
Pa-231	3.276 E4 a	α/ph	8.90E-05	7.10E-07	0.020	40	0.1	1.E-02		7.00E+01	9.00E-02	0.3	→ Ac-227

Implementation of the new BSS in Switzerland 04. June 2014 Nicolas Stritt, SFOPH

Authorisation

- Licence
- Simplify licence (mainly dentist, small hospital)
- Specifically exempt ("Typenbewilligung")

According to the radioprotection law, the use of ionizing radiation to human is subject to authorisation, this stay the same (no change in the law)

New licences

- NORM-Industrie:
 - from 1.0 mSv for workplace
 - from 0.3 mSv in the environment
 - Radon workplace: from 170 kBqh / m³
- Manipulation or in contact with orphan sources

Environmental and population protection

- Immission limit for effluent air and water
 - Air: 0.3 mSv / y through inhalation und immersion
 - Water: consumation of 650 I give rise to a dose of 0.3 mSv
- Replacement of tolerance value for food
- No other protection of the environment (animal, etc.)

Building material

- use of the activity concentration index (I) for the gamma radiation emitted by building materials according to Euratom BSS
- Building material with I < 1
 No restrictions on the envisaged use of such materials
- Building material with I < 1 should not give doses exceeding 1 mSv / y

Occupational exposure

New

- Introduction of category A and B worker
- NORM-Industry: from 1 mSv per year
- Radon in workplace: from 170 kBqh/m³
- Flightpersonal: from 1 mSv per year

Modification

- Reglementation for pregnant women
- Reglementation for young persons

Dosimetry

NORM, Radon

Ambiant dosimetry – time of stay (dosimetry done by calculation)

Flight personal

Fligthroute, planification of schedule (dosimetry done by calculation)

Interventional medicine

• Double dosimetrie mandatory

Eye lense

 Use of double dosimetry (use of correction factor to take into account the geometry and wearing of glasses)

Hand

• Finger dosimetry mandatory (use of correction factor for finger tip dosis)

Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Radiation Protection Division

HASS sources, new value

New D-value (BSS) are higher than the old Swiss (GQL) value for HASS

GQL D-Value

HASS sources, number of sources

A decrease of number sources which fall into categorie HASS with the New D-value (BSS),

factor 5 for the medicine and research field, factor 2 for industry field

Radioactive sources

- HASS
 - Definition according to Annex II Euratom BSS
 - Safety concept according to IAEA
 - Each HASS, Individual autorisation mandatory
 - exeption Ir-192, afterloading appliances
 - too many authorisations to be issued per year

Radioactive sources

Orphan sources

- Authorisation mandatory for
 - Incineration centers
 - Metal scrap dealers
- Requirement on:
 - Training
 - Storage
 - Safety concept
- Mandatory installation of measurement device at the entrance

Medicine, Swiss approach

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Medicine

- According to the domain of dose (to patient) different requirement are forseen:
 - Documentation needed for authorisation procedure
 - Presence of medical physicist
 - Introduction of Clinical Audit
 - Possibility of screening program
 - Possibility of X-Ray imagery for non clinical purpose (scanner, etc.)
 - Introduction of clinical incident reporting system (CIRS)
- Inclusion of the 3 level of justification according to ICRP in the legislation

Federal Office of Public Health FOPH

Radiation Protection Division

Medicine, diagnostic reference level

 Adaptation and introduction of diagnostic reference level in all medical field, mandatory of automated exposition control

Technical ordinance in medicine

 Adaptation of the quality assurance for the all X-ray chain from the X-ray unit till the image

- New dose limit for carriers and comforters
- Introduction of the new controlled area concept, controlled and supervised area
- New requirement on fire resistance for storage room with radioactive sources in the medical field

Training and education

- Euratom BSS definition of RPE / RPO, recognition of training
- Goal: mutual recognition of RP

In CH in the medical field only more than 50 recognition per year since Bilateral Agreement with EU

 For the requirement on education in radiation protection and recognition of the competence of expert in the different field (nuclear powerplant, medical, industrial) a Swiss approach was adopted.

Concept EUTERP, EU-BSS

Swiss System

Goal of the system in CH and of the training in radiation protection is to garantee the security of population, workers, patient and environment

Swiss System

Old System used the definition of qualified person in radiation protection. New we will have 8 categories of person dealing with ionizing radiation and

each of them need a different training and education:

- 1. Person dealing with ionizing radiation
- 2. Person having responsibility to third one
- 3. Medical personal (without physician, protection of patient)
- 4. Medical physician (Radiology, nuclearmedicine, general practitioner with X-ray units)
- 5. Medical physicist
- 6. Radiation Protection Expert (RPE CH)
- 7. Radon expert
- 8. Person in emergency organization or taking part to emergencies

Training and education

- Necessity to have a responsible recognized RPE (CH) in all Authorization (medicine / industry / nuclear power plant)
- Emergency Personal, training mandatory
- Recognition of the education through a regulatory body for the categories 2 to 8
- Definition of the education in legislation for all 48 groups
 - Competence
 - Content of the education
 - Taxonomy for the content of the training (5 levels, Bloom Taxonomy)
 - Autorised activity
- Introduction of a mandatory continuous education in radioprotection
- RPE/RPO introduced in the Swiss concept with one category RPE (CH)

Continuous education

- Mandatory continuous education for all RPE (CH) having a function
- Continuous education is composed of
 - Lessons learn
 - New development
- This continuous education must be recognized by a regulatory body
- Periodicity: 5 years or 3 years for high dosis and risk (Therapy, etc.)
- For all other person involved in radiation protection, mandatory continuous education under the responsability of the RPE (CH)

Radon

Existing radon program from 1994 to 2014

Art. 110-118a : Ordinance on radiation protection (ORaP)

Dwelling and building with public acces

Limit value 1000 Bq/m³ Guideline value 400 Bq/m³

Workplaces: Limit value 3000 Bg/m³

Statistics (State 2013):

- ~ 150'000 measured buildings
- ~ 3'000 buildings > **1000 Bq/m³** ~12'000 buildings > **400 Bq/m³**

New reference value for Radon

- Population
 - 300 Bq/m³ instead of value of 1000 Bq/m³
 - All Switzerland is to be considered as radon area
- Workplace
 - 1000 Bq/m³ instead of all value of 3000 Bq/m³
 - monthly 170 kBqh/m³
 - or 1000 Bq/m³ for 170 h stay per month
 - than limit of 20 mSv/y (planed or work situation)

Buildings concerned

Home and dwellings with concentration higher than the limits of	1000 Bq/m ³	300 Bq/m ³			
Already identified	3000 building (2%)	15'000 building (12%)			
Estimation for all Switzerland	5000 - 10'000 building	50'000 - 100'000 building			

Radon reference level

Accredited measurements

- Cantons need an accreditation from SFOPH
- Accreditation validity max 5 years
- Measurements protocols (in development: working group METAS)
- In case of exceeding the reference value: notification of the concerned authority
- Delay of 1 month after receiving results to register measurement in the radon database
- Measurements in schools and kindergarten forseen

Building permission

- Canton has the obligation to inform building owner about the requirements of ORaP
- Building owner is responsible :
 - to be under reference level
 - to take prevention measures (conform to state of the art)
 - make a radon measurement in new buildings
- In case of exceeding the reference value :
 - radon mitigation within 1 year
 - building owner can use the private law to receive reimbursement from the construction company

Graded approach for radon mitigation

- Radon mitigation, in case of exceeding 300 Bq/m³:
- Priority for schools and kindergartens
- Dwellings:
 - According emergency of the case und economical criteria
 - Ultimately by the next renovation with building permission
 - Possibility of derogation if the principle of proportionality isn't respected
- Building owner:
 - pays the mitigation costs
 - measures radon after mitigation and inform the authority about result

Protection of renters

- About 70% of the Swiss household are renters
- The canton can ask for a measurement in case of renter request

- In case of exceeding the reference value :
- Now: building owner has 3 years to mitigate
- Future: renter can use the private low

Workplaces

- Obligation of measurement for the employers in "workplaces with radon risk": underground facilities, caves and supplies facilities
- In case of exceeding the reference value of 1000 Bq/m³: Calculation of the radon concentration integrated on the working time over 1 month
- If the integrated radon concentration exceed 170 kBqh/ m³: transfer to planned exposure situation
- 170 kBqh/ m³: 1000 Bq/m³ over 170 hours monthly working time

Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Radiation Protection Division

Radon consultants

- Requirements for the institution organizing radon training defined in the legislation
- FOPH publishes a list of radon consultants
- Radon consultants on the list are obliged to prove their activity
- Work done according to the state of the art

State of the art

July 2014: new Version of the **SIA-NORM 180** : "Thermal insulation, protection against humidity and air quality in buildings" Radon included

New action plan on Radon 2012 - 2020

www.ch-radon.ch

National Action Plan concerning Radon 2012-2020

Jack found his Radon Gas Protection Kit on the Internet at Amazon.com.

- Introduction in the legislation of a concept to be able measure radioactivity at the border
- Concept planed a collaboration between SFOPH Office of Border Gards office
- Control of radioactivity by import and export
- Concept for measurement at the border is now in progress
- Mobile measurement system

Federal Office of Public Health FOPH

Radiation Protection Division

54

Resume

- Revision of 10 Ordinances in radiation protection
- Long project, more than 4 years, not finished
- Harmonization with Euratom BSS and ICRP 103
- New expositions situation, new limit and reference values rise questions and many adaptations in the legislation are needed (clearance level, radon, medicine, HASS)
- Education concept (RPE/RPO) of BSS vague and difficult to integrate in Switzerland, Swiss approach

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Radiation Protection Division

Thank you for your attention

Bern, Switzerland