Aircraft Crew Exposures in Germany from 2004 – 2009

Gerhard Frasch

Federal Office for Radiation Protection (BfS) Germany

14th European ALARA Network Workshop, Dublin, 4-6 Sept. 2012

Cosmic radiation as existing exposure

Radiation exposure of German aircraft crews

Aviation and optimization

Globalisation and future challenges

Cosmic radiation as existing exposure

Discovery of cosmic radiation

Victor Hess 1883 - 1964 Nobel price 1936

High altitude radiation

Protons (> 1 GeV)

Geo-magnetic shielding of cosmic ray

Ambient dose rate by latitude and longitude in 11 km altitude, Dec. 2002

Bundesamt für Strahlenschutz

Solar cycle and solar activity

Increase of route doses 2004 - 2009

Bundesamt für Strahlenschutz

Radiation exposure of German aircraft crews

Radiation exposed work sectors

Monitored workers and collective doses in Germany, 2010

Mean annual dose in work sectors

Monitored persons with measurable doses, Germany 2010

Frequency distribution of dose Cabin and cockpit personnel, Germany, 2009

Frequency distribution change

All aircraft crews, Germany, 2004 vs. 2009

Trend of average monthly dose All aircraft crews, Germany, 2004 - 2009

Aviation and optimization

RP problems in aviation

Protection principle	Application to aviation	Practical consequences
Distance	lower cruising altitude	 more fuel consumption, higher cost, more environmental burden.
Shielding	at fuselage protective clothes cruising along lower latitudes	 not feasible (weight), ineffective (energy), ineffective, not acceptable, not applicable, ineffective: longer routes → more radiation exposure, (see above).
Time	less block hours	 more part time personnel, economically not acceptable

ALARA and frequency distributions of dose

Bundesamt für Strahlenschutz

Optimization by flight planning

Calculation programs for cost-optimized flight routes:

Target criteria:

Fuel consumption, flight time + route dose

Optimization by work planning

Allocation of personnel to route-mix

 Multi-type employment of pilots: long-haul / short-haul mix within aircraft families

Optimization en route RP policy of IFALPA*

- Avoid flying above optimum flight level
- Avoid last step climb
- Avoid intermediate step climbs with following descent
- Cruise at lower flight level with true air speed of originally planned higher flight level (at least for the later part of flights)

*) International Federation of Air Line Pilots' Associations

Globalisation and future challenges

Global airspace at 12:00 GMT

Flight routes in polar region < 2000 "Old Europe" > 2000 "New Global Player" 1960s-1990s 2000s http://upload.wikimedia.org/wikipedia/ http://upload.wikimedia.org/wikipedia/ en/1/1d/PolarRoute.png en/1/1d/PolarRoute.png

Flight routes in polar region (cont.) Far East - North America

Going global - via North Pole

Future challenges

- Development of new long-range aircraft
- Longer non-stop flights
 (> 15 h, e.g. Singapore New York)
- Increase of long-haul route doses: by 30 50 % (estimation by VC Cockpit, Germany)

Thank you!

Quelle: http://www.lens-flare.de/flugzeug-zwischen-wolken-5655.htm

