

Working Group 3 Economic and technical factors, and endpoints of optimisation

14th EAN Workshop

"ALARA in Existing Exposure Situations"

Dublin, Ireland 4-6 September 2012

European ALARA Network

WG3: Economic and technical factors. Endpoints of optimisation

- How should the "ALARA process" work in practice?
 - a selection from several options based on predicted residual dose?
 - A single or repeated process?
- How practical is this for Rn in homes, or cosmic rays?
- Is there a role for CBA? If so, what is the cost of the man-Sv? And should this be adjusted, eg for different stakeholders such as home owners?
- How do you determine that exposures are ALARA, ie when do you stop? Is this limited by the practicalities of measurement and dose assessment?

Optimisation is a process

- To keep individual doses, number of the people exposed and likelihood of potential exposure ALARA
- Below DC or RL
- On-going, cyclical (evaluation of the ES, identification of the possible options, selection of the best option under the prevailing circumstances, implementation, review), continuous, forward-looking, iterative, systematic, structured

Starting point of the process

- In Planned ES, starting point = set the dose constraint (DC)
- In Existing ES, need for characterisation of the situation before setting reference levels (who is exposed, when, where, how...?)
- DC and RL are situation related and predetermined
- Frame (ICRP 103, Table 5): 3 bands + rational (controllability, benefit, requirements)
- Typically band 1-20 for Existing ES

European ALARA Network

The process – RP System

- Frame of mind: always questioning
- ICRP 101 Part 2: broadening the process (equity, RP culture, stakeholder involvement)
- Quantitative + qualitative methods
- Requires commitment at all levels
- Graded approach; transparency; traceability
- Best option = specific to the ES
- Decision aiding tools: BATNEEC, CBA, value of man-Sv
- Dialogue: between professionals, with stakeholders
- Long-term perspective

The process - Discussion

- Existing ES affect day to day life; many challenges: protective actions from authorities complemented with self-help protective actions; responsibility shared (multiple decision makers); many stakeholders; preservation of dignity
- Radiation often is not the only risk; could be conflict between different risks
- Representative person may be each individual
- Need to develop dialogue, awareness of people (Radon), RP culture, right to know: information, campaigns, training?
- Risk perception: less we know the risk, more we are afraid of; need to persuade (Rn) vs need to explain that source deletion is not possible or relevant

The process – Discussion (continued)

- Science generally not sufficient (no evidence, need for values)
- Plurality (sources of information, sources of measurements)
- Mandatory requirements are generally not the solution (Rn)
- CBA generally not used
- CEA for Rn (WHO model, IRL): for strategy (set the RL) not for situation
- Cost should include information, waste...
- Workers: either occupationally exposed (classified) or managed as members of the public

Endpoint of the process – RP System

- Normally, no predetermined endpoint
- Clearance fits for materials, not for exposure situations
- Case by case basis: residual dose specific to the ES
- Could be close or well below the RL
- Optimisation is not minimisation
- Emergency and Existing ES: tend to levels of exposure comparable with those in normal situations

Endpoint of the process - Discussion

- The risk we are ready to take is depending on the circumstances
- Depending of the available budget
- The question who is paying is not fundamental in practice
- Societal and political pressure
- Dialogue is needed
- Numbers cannot be the starting point of the dialogue
- The perception of the ES shall be shared (e.g. experience with aircrews)
- More legal responsibility (employer, landlord...) leads to more enforcement (but not a smaller residual dose)

Endpoint of the process – Discussion (continued)

- Some countries set endpoints: D using 10 μSv/a; UK with clean-up criteria
- Combination RL + endpoint may be confusing
- What is the relationship between RL and endpoint?
- What if residual dose > endpoint?
- What if residual dose > RL? It depends on experience

Our key conclusions and recommendations

- How should the "ALARA process" work in practice?
 - a selection from several options based on predicted residual dose? A single or repeated process? (Could be)
- How practical is this for Rn in homes, or cosmic rays? (Yes)
 - Mainly a <u>practical</u> process
 - <u>Characterisation</u> of the situation is a crucial point, including who is responsible for what?
 - Consider what existing DC and RL are relevant
 - How can I reduce doses, risks? (<u>options</u>)
 - Considering resources, other factors, use of tools,
 - The process should be shared with stakeholders
 - Incorporation of <u>values</u> beside science

Our key conclusions and recommendations

Is there a role for CBA? If so, what is the cost of the man-Sv? And should this be adjusted, eg for different stakeholders such as home owners?

CBA is just a tool, not the solution, but it and other tools (CEA, MAUA, etc) may be used as they provide <u>structure</u> to the process, providing <u>traceability</u> and <u>rationality</u>.

We are not prepared to put a number on the man-Sv (right now)

Our key conclusions and recommendations

How do you determine that exposures are ALARA, ie when do you stop? Is this limited by the practicalities of measurement and dose assessment?

- Optimisation in not minimisation
- Try to remove all detectable contamination... wrong ! 9
- •The process is iterative (both when planning the intervention and when undertaking the radiation actions we have to be ready for the unexpected)
- Must consider the uncertainty in predictive dose assessment